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Abstract. In this Letter we announce rigorous results that elucidate the relation between
metastable states and low-lying eigenvalues in Markov chains in a much more general setting
and with considerably greater precision than has so far been available. This includes a sharp
uncertainty principle relating all low-lying eigenvalues to mean times of metastable transitions, a
relation between the support of eigenfunctions and the attractor of a metastable state and sharp
estimates of the convergence of the probability distribution of the metastable transition times to the
exponential distribution.

1. Introduction

The phenomenon of metastability has been a fascinating topic of non-equilibrium statistical
mechanics for a long time. Recently, it has found renewed interest in the investigation of glassy
systems and ageing phenomena, which appear to play a central role in many physical and non-
physical systems. An approach to link metastability to spectral characteristics, in particular
low-lying eigenvalues and the corresponding eigenfunctions, has been proposed by Gaveau
and Schulman [9]. Such an approach is appealing not only because it allows us to characterize
metastability in terms that are intrinsically dynamic and make no a priori reference to geometric
concepts such as ‘free energy landscapes’, but also since it allows numerical investigations of
metastable states via numerical spectral analysis (see Schütte et al [13,14] for applications to
conformational dynamics of biomolecules).

Relating metastability to spectral characteristics of the Markov generator or transition
matrix is in fact a rather old topic. The earliest mathematical results go back at least as far
as Wentzell [16] (see also [10] for more recent results) and Freidlin and Wentzell (see [7]).
Freidlin and Wentzell relate the eigenvalues of the transition matrix for Markov processes with
exponentially small transition probabilities to exit times from ‘cycles’. Scoppola [15] gives a
similar result based on a different renormalization procedure developed in [11, 12]. Wentzell
has a result for the spectral gap in the case of certain diffusion processes. All these relations
result in some way from the application of large-deviation methods and are, consequently, on
the level of logarithmic equivalence, i.e. of the form limε↓0 ε ln(λεi T

ε
i ) = 0 where ε is the small

parameter, and λεi , T
ε
i are the eigenvalues and exit times, respectively. This rather crude level

of precision persists also in the more recent literature and prevents, in particular, applications
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to systems with unbounded numbers of metastable states, which are particularly relevant for
glassy systems.

In this Letter we announce results that—for a large class of Markov chains—improve
this situation considerably: in particular we allow for the number of metastable states to grow
(with, for example, the ‘volume’), and we give precise control of error terms for ‘finite-volume’
systems. Moreover, we provide representations for all quantities concerned that are computable
in terms of certain ‘escape probabilities’ that are in turn well controllable through variational
representations [2].

Our starting point will be the definition of a metastable set, MN , of points, each of which
is supposed to be a representative of one metastable state, on a chosen timescale. It is important
that our approach allows us to consider the case where the cardinality of MN depends on N .
The key idea behind our definition will be that it ensures that the time it takes to visit the
representative point once the process enters a ‘metastable state’ is very short compared to the
lifetime of the metastable state. Thus, observing the visits of the process at the metastable set
suffices largely to trace the history of the process.

The results presented here cover the case of what we would call generic metastability, i.e.
each point of the metastable set corresponds to a different timescale and an associated isolated
eigenvalue of unit multiplicity. Our methods are, however, also intended to treat more general
situations where groups of finitely, or possibly countably many, states communicate on the
same timescale. However, the analysis of the resulting phenomena is by no means trivial and
requires a case by case analysis. As first example of a situation with an unbounded number of
effectively communicating metastable states we refer to the analysis of ageing phenomena in
the random energy model in [1].

A more detailed exposition of our results, as well as the proofs, will be given in two
forthcoming papers [3, 6].

2. Metastable sets and metastable states

We will consider in the following Markov chainsXt with state space �N , discrete time† t ∈ N

and transition matrices PN . We will assume that for any fixed N they are ergodic, and have
a unique invariant distribution QN . The special case when PN is self-adjoint with respect to
the measure QN is referred to as reversible dynamics. Some of our results will be sharper in
that case. We are interested in the situation when these chains exhibit ‘metastable’ behaviour;
loosely speaking, this means that the state space �N can be decomposed into subsets SN,i such
that the typical times the process takes to go from one such set to another are much larger than
the time it takes to ‘look like’ being in equilibrium with respect to the conditional distribution
QN(·|SN,i). Some reflection shows that this statement has considerable difficulties and cannot
be interpreted literally, and that a precise definition of metastability is a rather tricky business
(see, for example, the recent discussion in [4]). We will give a precise definition that is,
however, inspired by this vague consideration. The main point here is that one should make
precise the two timescales we alluded to. We will take the following attitude: to appear ergodic
within SN,i , the process should have at least enough time to reach the ‘most attractive’ state
within SN,i , while at least the time to go from two such states in different metastable regions
should be long compared to that time. Note that this concept is rather flexible and allows us,
in general, to define metastable states corresponding to different timescales.

The following definition of ‘metastable sets’ follows this ideology; however, we prefer
to use certain probabilities rather than actual times as criteria, mainly because these are more

† All results apply, however, also to continuous time.
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readily computable. Linking them in a precise manner to times will be part of our results. We
will write τ xI , for x ∈ �N , I ⊂ �N , for the first non-zero time at which the process started at
x arrives at I .

Definition 2.1. A set MN ⊂ �N will be called a set of metastable points if it satisfies the
following conditions. There are finite positive constants aN , bN , cN and rN satisfying for some
sequence εN ↓ 0, a−1

N � εNbN , such that the following hold.

(i) For all z ∈ �N ,

P[τ zMN
< τzz ] � bN . (2.1)

(ii) For any x �= y ∈ MN ,

P[τ xy < τxx ] � a−1
n . (2.2)

(iii) We associate with each x ∈ MN its local valley

A(x) ≡ {z ∈ �N : P[τ zx = τ zMN
] = sup

y∈MN

P[τ zy = τ zMN
]}. (2.3)

Then

rN � QN(x)

QN(A(x))
≡ Rx � c−1

N . (2.4)

We will also write Tx,I ≡ P[τ xI � τ xx ]−1. An important characteristic of the sets I ⊂ MN

isTI ≡ supx∈MN
Tx,I . A simplifying assumption, that will be seen to ensure sufficient ‘spacing’

of the low-lying eigenvalues is that of ‘genericity’, defined as follows.

Definition 2.2. We say that our Markov chain is generic on the level of the set MN if there
exists a sequence εN ↓ 0, such that the following hold.

(i) For all pairs x, y ∈ MN , and any set I ⊂ MN\{x, y} either Tx,I � εNTy,I or
Ty,I � εNTx,I .

(ii) There exists m1 ∈ MN such that for all x ∈ MN\m1, QN(x) � εNQN(m1).

Each of the elements of MN in the generic case will then correspond indeed to a metastable
state. Our first task is to identify precisely the notion of the exit time from a metastable state.
To do so, we define for any x ∈ MN the set MN(x) ≡ {y ∈ MN : QN(y) > QN(x)}; these
are the points that are even more stable than x. The metastable exit time, tx ≡ τ xMN (x)

, from
x is then defined as the time of the first arrival from x in MN(x). With this notion we can
formulate our main result.

Theorem 2.3. Assume that MN is a metastable set and that the genericity assumptions are
satisfied with εN such that rNcNεN ↓ 0 and εN |�N ||MN | ↓ 0. Then the following hold.

(i) For any x ∈ MN ,

Eτx = R−1
x Tx,MN (x)(1 + o(1)). (2.5)

(ii) For any x ∈ MN , there exists an eigenvalue λx of 1 − PN that satisfies

λx = 1

E tx
(1 + o(1)). (2.6)

Moreover, in the reversible case there exists a constant c > 0 such that for all N

σ(1 − PN)\ ∪x∈MN
λx ⊂ (cbN |�N |−1, 2]. (2.7)

(iii) For any x ∈ MN , for all t > 0,

P[tx > tE tx] = e−t (1+o(1))(1 + o(1)). (2.8)
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(iv) If ψx denotes the eigenvector of 1 − PN corresponding to the eigenvalue λx , then

ψx(y) =
{

P[τ yx < τ
y

MN (x)
](1 + o(1)) if P[τ yx < τ

y

MN (x)
] � εN

O(εN) otherwise.
(2.9)

Remark. Explicit bounds on the error terms are given [3,6]. In the reversible case we actually
have extremely precise control on the o(1) terms in (2.8) in terms of the low-lying eigenvalue
cluster, with error terms on the scale determined by the separation from the rest of the spectrum.
In the irreversible case, we control the spectrum essentially only in a vicinity of the real axis
which replaces (2.7); while this is enough to obtain (2.8), bounds on the errors there are much
weaker.

Let us make some additional comments on this theorem. First of all, the identification of
what constitutes a metastable exit is crucial, and, in particular, the fact that these processes
include the transition through the ‘saddle point’, guaranteed in our case by the insistence that
the process by time tx has actually arrived in MN(x). Without taking this into account, the
precise uncertainty principle (ii) could not hold. It is interesting to note that, on the level of
this theorem, the difficulties associated with the control of the passage through a saddle are
not visible, and that we have the exact formula (2.5) for the mean exit time. Of course the
difficulty is hidden in the quantities Tx,y , whose computation is far from trivial. However, we
have shown in [2] that at least in the reversible case, using a variational representation, very
precise control of such quantities can be gained in certain settings. Somewhat less precise
results can also be obtained in some non-reversible situations [6]. Concerning our estimate of
the eigenfunctions, it is easy to see that [3] P[τ yx < τ

y

MN (x)
] is either very close to unity or very

close to zero, except on a set of points whose invariant measure is extremely small. Therefore,
the corresponding right eigenfunctions ψr

x(z) = QN(z)ψx(z) are essentially proportional to
the measure QN conditioned on the local valley corresponding to x (all up to errors of order
εN ), i.e. they do indeed represent metastable measures, as suggested in [9].

3. Some ideas of the proofs

The first major ingredient of the proofs is a representation formula for the Green function of
the transition matrix PN in terms of certain probabilities. It implies in particular that for any
I ⊂ �N ,

E txI =
∑

y∈�N\I\x

QN(y)

QN(x)
P[τ yx < τ

y

I ]P[τ xI < τxx ] +
1

P[τ xI < τxx ]
. (3.1)

This formula was first derived for the reversible case in [2]. An apparently independent
derivation that also covers the non-reversible case was given recently in [8]. It allows us in
particular to prove (2.5) in a rather simple way. However, the realization that this formula
actually arises from a representation of the Green function makes it even more useful.

Our analysis of the spectrum of 1 − PN passes through the analysis of the Laplace
transforms, Gx

y,J (u) ≡ E eut
x
y 1Iτ xy <τxJ of transition times of a process that is ‘killed’ upon

arrival in a set J ⊂ �N . We write P JN for the transition matrix of such a process, and we write
λJ for the smallest eigenvalue of (1 − P J ). It then turns out that all eigenvalues of (1 − PN)

below λJ can be characterized as follows. Set u(λ) ≡ − ln(1−λ). Define the |J |× |J | matrix
GJ (u) whose elements are

δm′,m −Gm′
m,J (u) m′,m ∈ J. (3.2)

Then λ is an eigenvalue of (1 − PN) below λJ if and only if

detGJ (u(λ)) = 0. (3.3)
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This equation is rather easy to understand if |J | = 1. In this case, (3.3) becomes simply
Gm
m(u(λ)) = 1. By a simple renewal argument, one sees that Gm

x (u) = Gm
x,m(u)

1−Gm
m,x(u)

. Therefore,

u(λ) defined by (3.3) is the first value at which supx∈GN
Gm
x (u) = +∞. The general

formula (3.2) is somewhat less intuitive. Basically, one makes an ansatz for the eigenfunctions
of (1 − PN) in terms of the Laplace transforms of the form

%(x) =
∑
m∈J

φmG
x
m,J (u). (3.4)

One then finds that condition (3.3) is sufficient for the ansatz to yield eigenfunctions with
u = u(λ). Moreover, one can show that if λ is an eigenvalue then the eigenfunctions can be
represented in this form and (3.3) must be satisfied.

To complete the proof one needs good control over the Laplace transforms; this is partly
provided again by the representation of the Green function, complemented by lower bounds on
eigenvalues λJ obtained from a Donsker–Varadhan [5] argument. The actual proofs are rather
involved and must be left to the longer publications [3,6]. Let us finally mention that the good
control over the spectrum of (1 − PN) allows a very good control of the analytic properties of
the Laplace transforms, which allow in turn the sharp estimates on the probability distribution
of metastable transition times stated under (iv).
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[14] Schütte Ch, Fischer A, Huisinga W and Deuflhard P 1999 A direct approach to conformational dynamics based

on hybrid Monte Carlo J. Comput. Phys. 151 146–68
[15] Scoppola E 1995 Renormalization and graph methods for Markov chains Advances in Dynamical Systems and

Quantum Physics (Capri, 1993) (Singapore: World Scientific) pp 260–81
[16] Wentzell A D 1972 On the asymptotic behaviour of the greatest eigenvalue of a second order elliptic differential

operator with a small parameter in the higher derivatives Sov. Math.–Dokl. 13 13–7


